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The investigation of the simultaneous motion of immiscible liquids in pipes and in 
various kinds of industrial apparatus is very timely in the practical aspect of the problem, 
because often it is not so much the actual values of the relevant hydrodynamic parameters 
that are important as what they ultimately govern, namely the most practical operating con- 
ditions and the efficiency of a large class of technological processes involved in various 
branches of industry. The analytical approach to such complex flows is difficult, making 
it necessary to resort to experiment and similarity methods and to analyze probability 
situations involving disperse-phase flow elements that vary in space and time [I]. In par- 
ticular, the implementation of continuous mass transfer, extraction, and other chemical 
processes in liquid--liquid systems is based on frequently repeated events of aggregation and 
breakup of droplets of the disperse phase and depends on the configuration and nature of 
the two-phase flow process [2]. The semiempirical approach to the calculation of the co- 
efficient of fluid friction of dilute emulsions also requires a priori information about the 
droplet size in the disperse phase [3]. 

The breakup of droplets of the disperse phase in the motion of liquid--liquid dispersions 
in turbulent pipe flow takes place under the dynamic and shear stresses of the continuous 
phase~ According to the theory developed by Kolmogorov [4] and Hinze [5], the maximum 
diameter of breakup-stable droplets is related to the average flow velocity by the expres- 
sion d, ~ U -1"2. To date, however, the interpretation of the experimental data on the basis 
of the Kolmogorov--Hinze model has failed to provide a reliable dependence of the droplet 
sizes on the conditions of pipe flow of dispersions with different physicochemical proper- 
ties [6, 7]. For example, a different law, d, ~ U -~'5, which departs significantly from the 
conventionally accepted form, has been established, initially on the basis of experimental 
data in [8] and later in [9, i0]. 

In this study we attempt to generalize Kolmogorov's theory in such a way as to refine 
existing notions of the complex processes involved in the breakup of droplets in nonuniform 
turbulent flow of a mutually immiscible liquid, on the basis of published empirical material, 
and to eradicate the conflicts between the theoretical conjectures and the experimentally 
observed laws. The latter objective is essential to the tenable selection of mathematical 
models of droplet breakup for use in numerical and analytical studies of disperse systems 
[11, 12]. 

!. Droplet Breakup in Uniform Turbulent Flow 

Despire the complexity and statistical nature of the process of breakup of droplets by 
turbulent flow of a mutually immiscible liquid, the hypothesis that the local structure of 
the flow is the principal factor affecting the maximum diameter of breakup-stable droplets 
[4] has been extremely fruitful. On the basis of dimensional-analytic considerations, this 
means that droplets larger than the turbulence microscale %o are predominantly acted upon 
by inertial forces. Otherwise breakup is instigated by viscous shear stresses. Assuming 
that droplet stability is associated primarily with interphase tension, we write the funda- 
mental relations in the form 

p~2~o/d,,  d, > %0; (i .1) 
pcOv/Or~a/d,, d,<~o, (1.2) 

where Pc and ~c are the density and dynamic viscosity of the continuous phase, o is the in- 
terphase tension, and v --'/, ~v/~r are the mean-square value and gradient of the eddy veloci- 
ties. 
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In the inertial interval of the domain condition (1.2) holds only for a very high rate 
of mixing in a special apparatus and will not be considered here. 

In the inertial interval of the domain of universal static equilibrium~ i.e., in the 
interval specified by the relation %o < d, < L, where L is the turbulence macroscale char- 
acterizing the upper limit of the spectrum of eddy --~ diameters, we have the relation v = 
2.0(ed,)2/3 [4]. The validity of this relation is supported by experimental work [13]. 
Here c denotes the energy dissipation rate per unit mass of liquid. Relation (i.i) is 
therefore reducible to the familiar form 

d, (p0/o)3/% 2~5 ~c ,  (1 .3 )  

where c is a constant to be determined experimentally. 

It must be noted, however, that the validity of expression (1.3) has been fully veri- 
fied only for the conditions of turbulent mixing by propeller-type and vane-wheel turbines 
in mixing vessels with deflectors [14]. The high turbulence intensity of the flow, in some 
cases 50-60% [15, 16], ensures the breakup of droplets with sizes up to the inertial inter- 
val of the spectrum of eddy velocities, where the contribution of viscous forces is insig- 
nificant. 

2. Nonuniform Pipe Flow 

The formal application of relation (1.3) to the breakup of droplets by turbulent pipe 
flow ignores some of its essential features. For example, while it is generally known that 
turbulent flow is locally isotropic over a large part of the pipe cross section, the turbu- 
lence intensity is 3-4% [13]. Moreover, the logarithmic profile of the average velocity in 
the wall zone is dictated not only by the dynamic forces, but also by the action of high 
shear stresses on the droplets. 

Under pipe-flow conditions the energy dissipation rate per unit mass of liquid is ex- 
pressed by the balance relation ~DiZPce/4 = Tw~DIU , in which the frictional stress at the 
wall T w = lPcU/8; ~ is the coefficient of fluid friction, calculated according to the 
Blasius formula; D and ~ are the diameter and length of the pipe; and U is the flow velocity 
averaged over the mass flow rate. The final relation has the form 

= ~US/2D. 

Substituting the expression for ~ and making certain transformations in accordance with [6], 
we can express relation (1.3) in terms of two dimensionless groups of parameters: 

We = 0.93 ( l /~O/d , )  ~'~, (2. l )  

where the dimensionless Weber number We = Ocd,Ui/o and the constant of proportionality is 
evaluated for c = 0.725 in accordance with the recommendations of [5]. 

Data from experimental studies [6-9] are shown in Fig. i in the dimensionless coordi- 
nates %We and ~D/d,, which follow from the Kolmogorov--Hinze breakup model in the form (2.1) 
applied to the conditions of turbulent pipe flow of a dilute liquid--liquid dispersion. This 
relation has been found to correspond well to the data of [6] (points 14) and to some 
of the data of [7] (points 2). Line II represents the end results of processing the data 
of [7] for two disperse systems: kerosene and transformer oil with water (points i and 2) on 
the basis of relation (1.3): d95/D = 4.0(PcDUi/o) -3/5. After transformation to the cus- 
tomary variables we have 

X W e  = i0,08~,~/3( lfX-D/d~O"?. 
Here the constant of proportionality is equal to 0.743 and 1.18 for % = 0.02 and 0.04, re- 
spectively; these values practically coincide with relation (2.1), which is represented by 
line I in Fig. 1. 

However, the second part of the data of [7] (points i), along with the data of [9] 
(points 3-5) and [8] (points 6-13), correlates with lines having an altogether different 
slope: --0.03 (in [6] the line is erroneously written in the form %We = 5.52): 

We = % (V~%D/d,) -~ 

where co is a dimensionless function of the viscosities of the phases in the disperse sys- 
tem. It can be verified that the relations between the fundamental parameters, namely the 
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average flow velocity, the interphase tension, the pipe diameter, and the maximum diameter 
of stable droplets, practically coincide with the empirical correlation postulated in [8]: 

We(Fc  U/o) ~ = c~[l + 0 . 7 ( ~  d U/a)~ 7 ], 

where gd is the viscosity of the disperse phase. Processing of the experimental results for 
D = 3.81 cm yields the constant ci = 38 [8]. Repetition of the experiments for D = 1.27 cm 
resulted in the constant c~ = 43, which confirms the relation d, ~ D ~ [9]. 

The fact that the doubtful [6, 7] relation d, ~ U -2"5 is not a consequence of erroneous 
processing of the experimental results [17] is illustrated by data from several studies~ 
shown in Fig. 2. Points 1 are taken from [8], points 2 from [4], 3 from [7], 4 from [ii], 
5-7 from [6], and 8 from [18]. Although the procedures used to measure the maximum diameter 
of stable droplets differed, this fact does not affect the general character of the func- 
tional relationship as long as the disperse phase has the same kind of droplet-size dis- 
tribution function. The volume/surface diameter d32, the diameter d95 of the droplets com- 
prising 95% of the volume of the disperse phase, and other such quantities reflect the dis- 
tribution function in generalized form and differ only by the proportionality constants. 
This conjecture is corroborated by lines I and III, plotted for the maximum diameter d,, and 
by lines II and IV for d32 [7] (the relationship of these diameters is expressed as d, = 
2.1d32). 
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The points from [8], approximated by lines I-III, correspond to disperse-phase vis- 
cosities of 7.2, 14.1, and 23.1 mPaosecandacontinuous-phaseviscosity of 0.97 mPa'sec. 
Lines I-III also identify points corresponding to the dispersion in water of droplets with 
viscosities of 0.62, 0.88~ and 28.1 mPa'sec [9], while lines I, II and IIi, IV represent 
dispersions of water in kerosene and of water in transformer oil with viscosities of the 
organic phase equal to I~82 and 16-18 mPaosec. It is important to note that the data of 
Fig. 2a correspond to the correlation equation (2.2)~ and the data of Fig. 2b to (2.1). 

An attempt to make a generalization, analogous to that in Fig. I~ of the experimental 
data of the above-cited papers in terms of the dimensionless groups given in [8] We(~cU/o) 
and ~dU/O proved unsuccessful. This is evidence of the universality of Kolmogorov's drop- 
let breakup theory [4]. However, although the nature of the breakup process may correspond 
to relation (2.1) in special cases, it is obvious from an examination of the data in Figs. 
1 and 2 that the extent of interaction of nonuniform turbulent flow with disperse-phase 
droplets is far greater than is allowable within the bounds of its local structure. 

3. Mechanism of Droplet Breakup in Nonuniform Turbulent Flow 

A relation for the maximum diameter of stable droplets in uniform locally isotropic 
turbulent flow can be derived theoretically on the basis of an analysis of capillary waves 
on the surface of a liquid sphere [17]. When the characteristic frequency of the turbulent 
fluctuations coincides with the natural frequency of the sphere, the droplet becomes un- 
stable. The natural frequencies fn of a droplet are given by the formula [19] 

~2g/~)- 8(n - - ! )n (n  ~ t)(n +2) a 
[(~ + f) oe+ ~oc] d~ 

The oscillatory motions of the sphere correspond to frequencies beginning with n = 2. Mak- 

ing use of the fact that the turbulent fluctuation frequency [0 =V~/d,, we deduce the 
following from the condition f2 = fo for liquid--liquid dispersions with close densities of 

the phases Pd ~ Pc: 

pod,~2~ = c~. (3.  i )  

In the inertial interval of the domain of universal static equilibrium [4] relation 
(3.1) is analogous in form to the well-known expressions (1.3) and (2.1), evincing the 
adequacy of the model in [17] for the breakup mechanism. 

It has been determined by visual observations, however, that in the course of breakup 
of droplets in pipe flow they are considerably deformed [8, 9, ii]. Under the action of the 
gradient of the average velocity a sufficiently large drop is elongated and, in the wall 
zone, acquires a form resembling an ellipsoid of revolution. According to Taylor's theory, 
the deformation F = (A + B)/(A -- B), where A and B are the major and minor axes of the 
ellipsoid, is related to the physical properties and dispersion flow conditions as follows 
[19]: 

- -  2o  ~l~dlPe--------~T t--87" ( 3 . 2 )  

Next, it is reasonable to assume that the diameter of the deformed droplets must be 
represented in expression (3.1) by an effective value taking into account the increase in 
the radius of curvature of the surface of the original sphere upon transition to an ellipti-' 
cai shape. To adjust for the change in the droplet diameter we introduce d e = d,f(F), where 
f is a function of the deformation. The average-velocity gradient in expression (3.2) can 
be written as follows with regard for the logarithmic distribution function in a hydrauli- 
cally smooth pipe: 

6 =  ~(~+d) - -u(~)  u , [ ,  (y-~d)% lnY%l 

Assuming t h a t  t he  dro~_eg i s  l o c a t e d  c l o s e  to  the  p i p e  w a l l ,  t h a t  y ~ d,  and t h a t  t h e  dy -  
namic v e l o c i t y  u ,  = dZ/8U, we o b t a i n  ( c o r r e c t  to  w i t h i n  a c o n s t a n t )  G = U/d,  Thus,  t he  
d e f o r m a t i o n  e x p r e s s i o n  ( 3 , 2 )  a c q u i r e s  the  form 

~c U ( ~ d )  
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where the function f(Zd/~c) under the conditions of the wall zone of turbulent flow differs 
from the expression in parentheses in (3.2) and is evaluated according to experimental data. 

The form of the function f(F) can be determined on the basis of the following consid- 
erations. Deformations by the average-velocity gradient are experienced by large drops 
having a diameter commensurate with the inertial interval. The upper bound is determined 
by the turbulence macroscale L = 0.0074DRe ~176 [20], where the Reynolds number Re = UDOc/~co 
Such droplets are acted upon only by the largest eddies, so that under turbulent pipe flow 
with d, ~ L it must be assumed that ~2 = u~ ~ IU2/8 [20]. Finally, bearing in mind the 
empirical relation for the investigated conditions d, ~ U-~'=a~'5 [8~ 9]~ on the basis of 
expression (3.1) we obtain f(F) E /Fo 

We have thus shown that the empirical relation (2.2) describes the resonant oscilla- 
tions of a deformed sphere with an effective diameter d e = d,~ and can be represented by 
the equation 0cde~2/o = c~, which has the same form as expressions (3.1). This means that 
the Koimogorov--Hinze model, extended to the breakup of deformable droplets, confirms the 
reliability of the correlation equation (2.2) and can be used to refine the mechanism of 
their breakup by nonuniform turbulent flow. 

4. Influence of Viscosities of the Phases of the Dispersion 

on the Stability of Deformable Droplets 

According to [5], with an increase in the viscosity of the disperse phase the oscilla- 
tions of a droplet are suppressed, and for sufficiently small values of ~d the viscosity 
of the disperse phase does not affect the breakup process. The correlation introduced in 
[8] reflects this viscosity dependence by the empirical term i + 0.7(~dU/O) ~ which pre- 
sumes a constant growth of the stable droplet size with ~d. However, there are data (cf. 
[9]) that do not conform to the nature of this dependence (curves I-IIi in Fig~ 2a). 

The indicated contradiction can be explained and the form of the functional relation 
for the viscosity ratio in (2.2) can be sensibly postulated by taking into account the 
above-determined viscous behavior of the breakup of deformable droplets. Experimental 
studies of the behavior of droplets in a simple shear field [21] have shown that the break- 
ing value of the velocity gradient has a minimum for a viscosity ratio ~d/~c in the 
interval from 0.2 to 1.0, in which the droplets break up most easily. Also, irrespectlve 
of the type of liquid--liquid system, if the condition ~d/~ c > 4 or ~d/~c < 0.005 holds, 
breakup will not occur. In this case the values of the breaking velocity gradient tend 
asymptotically to infinity. 

Figure 3 shows the values of co in relation (2.2) for various ratios ~d/~c (curve i) 
according to the data of [7-9]. Curve 2 represents the analogous dependence for the break- 
ing velocity gradient G, necessary in order to break up droplets in a simple shear field 
[21]. Although curves 1 and 2 are shifted apart because of the influence of turbulent 
fluctuations and the departure of the flow in the wall zone of the pipe from simple shear, 
the similarity of their behavior is further evidence in support of the breakup mechanism 
adopted in this study~ A shortage of experimental material prevents us from determining 
the analytical form of curve 1 in Fig. 3. For practical calculations the following 
approximation is proposed: 

c o : 4.27(~ld/!tc) -~ ~ r  ! < / ! % <  1.{15; ( 4 . 1 )  

c o , 4.2 ~ r  1 .@5"< !~:/~:~<2.~: ( 4 . 2 )  

co = 3,45(~a:~%) <~a ~ r  ! < / ~ , , > 2 . 4 .  ( 4 , 3 )  
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The validity of expressions (4.1)-(4.3) faust be restricted to the domain of variation of the 
phase velocities in experiments: 0.96 mPa'sec < ~l~ < 1.8 mPa'sec; 0.5 mPa.sec < ~d < 32.1 
mPa.see. 

It follows from a comparison of curves 1 and 2 in Fig. 3 that the viscous ~ha~acLe~- 
istics of the breakup process can be sensibly included by replacing the parameter ~dU/o with 
~d/~c for the estimation of co in relation (2.2). This operation also eliminates the 
scatter of the experimental points for small values of ~d, which in Fig. 8 of [8] and in 
Fig. 2 of [9] are clustered about the ordinate axis and in no way reflect the empirical 
relation (4.1) obtained on the basis of processing of the data of the cited works in the 
coordinates We and ~D/d, (see Fig. I). 

With a reduction in the deformability of the droplets the empirical curve of the type 
of curve 1 in Fig. 3 will doubtless change to the form proposed in [5]: 1 + f(~dU/o). The 
role of the viscous forces and, hence, of ~c in the inertial interval is small in comparison 
with the dynamic fluctuation forces. In this case the relation for the maximum diameter 
of stable droplets in the form (2.2) will go over to the form (2.1). The description of the 
transient process represents the problem of the resonant oscillations of a liquid droplet 
subjected to deformation in a shear field; the solution of this problem requires separate 
treatment. 
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